CINECA II (August-1973)
Sahara 2/1971
The main testable hypothesis of the proposed work is: Atmospheric inputs control rates of primary production and microbial diversity in oceanic waters where nutrients are limiting. The objectives of the project are to: 1. Obtain an improved temporal and spatial estimate of atmospheric dust inputs to the tropical N Atlantic through collections on a dedicated SOLAS process cruise. 2. Obtain an improved estimate of the seawater dissolution of N, P, Fe and Zn species from aerosol dust. 3. Determine the impact of atmospheric dust derived micronutrients on microbial community production and species diversity in the surface microlayer and underlying waters. In addition, researchers from the Archer/Geider group were on-board. The overall aim of their research was to determine the extent to which the photoprotective roles of DMSP and QAs influence their production rates in marine surface waters and hence, the production of their volatile breakdown products. The cruise objectives for this work were to: 1. relate DMSP and QAC concentrations to plankton community structure, light regime, photoinhibition, xanthophyll cycle and MAA accumulation in varying oceanic provinces and over diel cycles. 2. determine the potential for photoinhibition and DMSP/GBT turnover in natural phytoplankton in contrasting oceanic provinces. The cruise departed Tenerife on February 5, 2008, and we have conducted regular stations (typically 2 per day) along the cruise track. The track took us into the oligotrophic Atlantic waters, productive Cape Verde waters, and tropical waters with very high nitrogen fixation (judged initially from the Trichodesmium concentrations). The various researchers and groups have also started a range of biological experiments at different sites along the cruise track. We have encountered a major dust event in week 2, and then from week 3 of the cruise we encountered large amounts of dust. We have visited the TENATSO time series site near the Cape Verdes and have undertaken an extensive set of measurements there. We have collected the atmospheric dust for elemental analyses (at UEA and NOCS), and also to produce leachates which are used on board for biological experiments. We have undertaken sampling of the water column to analyse for dissolved and particulate metals, nutrients, dissolved organic matter, amino acids, hemes, thiols and phytochelatin synthase expression. In addition, nitrogen fixation measurements were undertaken, in tandem with nifh gene sampling. Nitrate uptake experiments have been conducted. Furthermore, bacterial phosphate uptake experiments have been undertaken using addition of collected dust. Halocarbon and DMS gas measurements have been conducted during the cruise. In addition, experiments have been undertaken by the Archer/Geider group on effects of high sun light exposure on DMS and GBT production. The cruise has been very successful with a minimum of lost time.
The aims of this cruise were to elucidate the processes responsible for controlling iodocarbon concentrations and provide a dataset that can be used to develop modelled estimates of iodocarbon sea-air fluxes in tropical Atlantic waters.
A circumnavigation oceanographic expedition to generate a high resolution inventory of global change impact on the ecosystem of the ocean, researching its biodiversity in the deep.